
[Kaur et al., 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[143]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Analysis of Component Integration in Component-based Development Paradigm

Manbir Kaur

Student, Department of ECE, Global Institute of Management and Technology, Amritsar, India

manbirkhurana90@gmail.com

Abstract
Component-based software development is achieving more popularity in today’s software development

community due to the increasing complexity of software systems, increasing costs of maintenance, and decreasing

costs of underlying hardware. Business organizations therefore prefer to build their systems from previously built

components which means they should concentrate more on selecting and composing components than manually adopt

software systems. As the popularity of such approaches grows, commercial software vendors tend to develop more

commercial software components and connectors. In this paper, an effort has been made to analyze various component

integration techniques with respect to component-based software development.

Keywords: Component, Component-based Software Development, Component Integration, Risk Analysis.

Introduction
 Modern software systems become more and

more large-scale, complex and uneasily controlled,

resulting in high development cost, low productivity,

unmanageable software quality and high risk to move

to new technology . Consequently, there is a growing

demand of searching for a new, efficient, and cost-

effective software development paradigm. One of the

most promising solutions today is the component-

based software development approach. This approach

is based on the idea that software systems can be

developed by selecting appropriate off-the-shelf

components and then assembling them with well-

defined software architecture. This new software

development approach is very different from the

traditional approach in which software systems can

only be implemented from scratch. These commercial

off-the-shelf (COTS) components can be developed

by different developers using different languages and

different platforms. This can be shown in Figure 1,

where COTS components can be checked out from a

component repository, and assembled into a target

software system. Component-based software

development (CBSD) can significantly reduce

development cost and time-to-market, and improve

maintainability, reliability and overall quality of

software systems. This approach has raised a

tremendous amount of interests both in the research

community and in the software industry. The life cycle

and software engineering model of CBSD is much

different from that of the traditional ones. This is what

the Component-Based Software Engineering (CBSE)

is focused.

Fig. 1 Overview of Component-based Software

Development Process

The term component-based software development

(CBD) can be referred as a process for building a

system which consists of the following activities:

searching and identifying components based on

preliminary assessment; selecting components based

on stakeholder requirements; integrating and

assembling the selected components; and updating the

system as components evolve over time with newer

versions.

Related work
Component-based Software Development

(CBSD) is used to develop high quality and reliable

products in less time domain and low cost. Component

Integration are one of the big challenges in CBSD and

different authors have presented different techniques

but lacking in desired performance, accuracy and user

http://www.ijesrt.com/
manbirkhurana90@gmail.com

[Kaur et al., 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[144]

friendliness. The CBSD initiates with the

identification and selection of components.

The success of CBSD depends upon the ability to

integrate the suitable components Fox, Lantner &

Marcom (1997) in their paper “A Software

Development Process for COTS-based Information

System Infrastructure” Proposed IIDA (The

Infrastructure Incremental Development Approach).

This process is based on the combination of two

models; waterfall model and spiral model. It has two

phases: Analysis and Design Phase.

Tran & Liu (1998) proposed a model known as CISD

(COTS-based Integrated Systems Development) in

their paper “A Procurement-centric Model for

Engineering Component-based Software Systems”.

Which is used to select multiple homogeneous COTS

products. The two phases of CISD model are:

Identification and Evaluation.

George T. Heineman (1998) Adaptation and Software

Architecture, This evaluation survey provides an

interesting overview of the state-of-the-art in

component adaptation and provides a good starting

point for discussions on the nature of component

adaptation mechanisms.

S. Mahmood, R. Lai and Y.S. Kim (2007) in their

paper,” State-of-the-art”, research in the area of CBD.

The areas surveyed were techniques for component

identification and selection, integration, deployment

and evolution.

Amandeep Kaur Johar & Shivani Goel (2011) in this

paper,” Risk identification approach for component-

based development” is discussed, a number of risks in

various component-based development stages and

these risks arise due to the widespread belief that it is

a low risk development strategy.

Nicolas Pessemier, Olivier Barais, Lionel Seinturier,

Thierry Coupaye, and Laurence Duchien (2002) ‘A

Three Level Framework for Adapting Component-

Based Systems’, France,2002. This paper deals with

the issue of software adaptation. This also focus on

Component-Based Software Development including

Architecture Description Languages, and clearly

identify three levels of adaptation.

Component integration approaches
Integration is the composition of

implemented and selected components to constitute

the software system. The integration process is based

on system architecture and deployment standards

defined by component framework and by

communication standard for component collaboration

[21]. The important task during the integration of

components is to deal with the mismatches that may

occur when putting together pieces developed by

different parties, usually unaware of each other [22].

Several other aspects need to be taken into

consideration like component adaptation, validation

and testing of selected components, reconfigurations

of assemblies and emerging properties of assemblies

integrated into the system.

The primary function of adaptation is to adapt the

behavior of a component C to integrate it within a

target application app. Consider figure 2. The target

application, App, has an interface it expects C to

support. The identified component may provide most

of the expected behavior, but not enough; in the figure,

there is glue code written which, in conjunction with

C, provides the necessary adapted behavior.

Fig. 2 Adaptation Context

A. Active Interfaces

An active interface for a component can be

programmed to take action when a method is invoked.

There are two phases to a method request: the before-

phase occurs before the component performs any steps

towards executing the request; the after-phase occurs

when the component has completed all execution steps

for the request. An active interface allows user-defined

callback methods to be invoked at each phase for a

method and thus may augment, replace, or even deny

a method request. Briefly, each component has an

associated component arbitrator that maintains the

callback methods installed for the active interface. The

arbitrator and the component communicate through a

special Adaptable interface. An adaptation to a

component is specified at an architectural level and is

translated into lower level adaptations.

B. Subclassing

Inheritance is a mechanism that allows an object to

acquire characteristics from one or more objects.

Essential inheritance relates to the inheritance of

behavior and other externally visible characteristics of

an object while incidental inheritance emphasizes the

inheritance of part or all of the underlying

implementation of a general object. Essential

http://www.ijesrt.com/

[Kaur et al., 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[145]

inheritance is a way of mapping real-world

relationships into classes and is used mostly during the

analysis and design phase of an object-oriented

project. Incidental inheritance often is a vehicle for

simply reusing or sharing code that already exists

within another class. Inheritance is both an adaptation

technique and mechanism. It is automatically built-in

to any component written using an object-oriented

language like Java or C++. Inheritance has the benefit

that newly created subclasses are separate from the

original component being adapted.

C. Open Source

Open Source modification occurs when the

application builder applies the necessary changes

directly to the source code for a component. Naturally,

such an approach is possible only if the source code is

available and if the application builder is capable of

understanding the component's code well enough to

make the desired changes. Increasingly, however,

more software systems are being developed and

deployed using this basic technique.

D. Wrapping

As an adaptation technique, wrapping can be used to

alter the behavior of an existing component C. A

wrapper is a container object that wholly encapsulates

C and provides an interface that can augment or extend

C's functionality. The Adapter and Decorator patterns

from are useful ways in which to coordinate the

controlled extension of classes, but it is typically very

hard to impose a design pattern onto an existing class

hierarchy. The Wrapping technique typically has no

supporting adaptation mechanism [23].

E.Glue code

Glue code is the code used to provide the functionality

to integrate different components. It deals with control

flow, Component Bridge and exception handling.

Glue code can be used to transfer information between

computer languages, it is not required to do so.

Generally, it allows one piece of code to call functions

in the other, or allows small data values to be passed

between code blocks. Generated glue code,

particularly when it connects distinct computer

languages, often contains code pieces specific for each

connected code module.

Conclusions
The idea behind the Component-Based

Development (CBD) is to develop software systems

not from scratch but by assembling prefabricated

parts. It gathers requirements from the customer and

selects the appropriate architectural style to meet the

objectives of the system to be built. It then selects the

components for reuse and qualifies those in order to

check that whether they properly fit in the architecture

for the system. Component-based software

development mainly involves COTS (Off-the-Shelf

Components) identification, COTS selection and

COTS integration activities. Component Integration

gradually puts the pieces together – COTS, glueware

and traditionally developed software – to assemble the

final application. The important issue when integrating

components is to deal with the mismatches that may

occur when putting together pieces developed by

different parties, usually unaware of each other. Thus,

it is extremely important that component services are

provided through a standard, published interface to

ensure interoperability.

References
1. G.Pour, “Software Component Technologies:

JavaBeans and ActiveX”, Proceedings of

Technology of Object-Oriented Languages and

systems, 1999, pp. 398-402.

2. Szyperski, C., Gruntz, D. and Murer, S. (2008),

Component Software: Beyond Object-Oriented

Programming, Addison-Wesley Professional,

Boston, First Edition 1997. ISBN 0-201-17888-

5.

3. Mahmood, S., Lai, R. and Kim, Y.S. (2007),

“Survey of Component-based Software

Development”, IET Software, Volume 1, No. 2,

pp. 57-66.

4. Alves, C. and Finkelstein, A. (2002),

“Challenges in COTS decision-making: a goal-

driven requirements engineering perspective”, In

Proceedings of the 14th international

Conference on Software Engineering and

Knowledge Engineering (Ischia, Italy, July 15 -

19, 2002). SEKE '02, vol. 27. ACM, New York,

NY, pp 789-794. DOI=

http://doi.acm.org/10.1145/568760.568894

5. Alves, C. and Finkelstein, A. (2003),

“Investigating conflicts in COTS decision-

making”, International Journal of Software

Engineering, 13 (5). pp. 1-21. ISSN 02181940.

6. Maiden, N.A., and Ncube, C. (1998), “Acquiring

COTS software selection requirements”, IEEE

Software, 15, (2), pp. 46–56.

7. Kontio, J., Chen, S.-F., Limperos, K., Tesoriero,

R., Caldiera, G., and Deutsch, M. (1995), “A

COTS selection method and experience of its

use”, Proc. 20th Annual Software Engineering

Workshop, Greenbelt, Maryland, 1995.

8. Tran, V., Liu, D.-B., and Hummel, B. (1997),

“Component based systems development:

http://www.ijesrt.com/
http://doi.acm.org/10.1145/568760.568894

[Kaur et al., 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[146]

challenges and lessons learned”, Proc. Eighth

IEEE Int. Workshop Software Technol. Eng.

Practice, pp. 452–462

9. Lee, S.D., Yang, Y.J., Cho, F.S., Kim, S.D., and

Rhew, S.Y. (1999), “COMO: a UML-based

component development methodology”, In Proc.

Sixth Asia Pacific Software Eng. Conf., pp. 54–

61.

10. Lee, J.K., Jung, S.J., Kim, S.D., Jang, W.H., and

Ham, D.H. (2001), “Component identification

method with coupling and cohesion”, In Proc.

Eighth Asia-Pacific Software Eng. Conf., pp. 79–

86.

11. Jain, H., Chalimeda, N., Ivaturi, N., and Reddy,

B. (2001), “Business component identification –

a formal approach”, Proc. Fifth IEEE Int.

Enterprise Distributed Object Computing Conf.,

EDOC ’01, pp. 183–187.

12. Chung, L. and Cooper, K. (2002), “Knowledge

based COTS aware requirements engineering

approach”, Proc. 14th Int. Conf. Software Eng.

Knowledge Eng., (ACM Press), pp. 175–182.

13. Carney, D.J., Morris, E.J. and Place, P.R.H.

(2003), “Identifying commercial off-the-shelf

(COTS) product risks: the COTS usage risk

evaluation”, Carnegie Mellon Software

Engineering Institute (SEI), CMU/ SEI-2003-

TR-023, Sept. 2003.

14. Lee, S.C., and Shirani, A.I. (2004), “A

component based methodology for web

application development”, Journal of System

Software, 71, pp. 177 - 187.

15. Dietrich, S.W., Patil, R., Sundermier, A. and

Urban, S.D. (2006), “Component adaptation for

event-based application integration using active

rules”, J. Syst. Softw., 79, (12), pp. 1725–1734.

16. Rogerson, D. (1997), Inside COM, Microsoft

Press, ISBN 1-57231-349-8.

17. [COR] OMG, CORBA,

http://www.omg.org/corba

18. [JAVA] Sun Microsystems, “JavaBeans 1.01

Specification”, http://java.sun.com/beans

19. [NET] Microsoft .NET Framework (2009),

http://en.wikipedia.org/wiki/NET_Framework,

preview release 19-10-2009.

20. Zhuge, H.: ‘A Problem oriented and rule based

component repository’, J. Syst. Softw., 2000, pp.

201–208

21. Pressman, R.S. (2000), Software Engineering-A

Practitioner’s Approach, McGraw-Hill

International Ltd., New York.

22. Cechich, A., Piattini, M. and Vallecillo, A.

(2003), “Assessing component based systems,

Component based software quality”, LNCS

2693, pp. 1–20.

23. Boehm, B., Abts, C., “COTS Integration: Plug

and Pray”, IEEE Computer, 32(1), Jan. 1999, pp.

135-138.

http://www.ijesrt.com/
http://www.omg.org/corba
http://java.sun.com/beans
http://en.wikipedia.org/wiki/NET_Framework

